Natural Product Synthesis

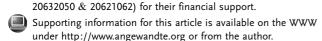
DOI: 10.1002/ange.200705557

Total Synthesis and Structure Assignment of Papuamide B, A Potent Marine Cyclodepsipeptide with Anti-HIV Properties**

Weiging Xie, Derong Ding, Weiwei Zi, Guangyu Li, and Dawei Ma*

Papuamides A (1a) and B (1b) (Scheme 1) are two novel cyclic depsipeptides that were isolated from Papua New

 $\begin{tabular}{ll} \textbf{Scheme 1.} & \textbf{Structures of papuamides A and B, as well as their chemical degradation product $\textbf{2}$. \end{tabular}$


Guinea collections of the marine sponges *Theonella mirabilis* and *Theonella swinhoei*. Both compounds exhibit a strong inhibitory effect on the infection of human T-lymphoblastoid cells by HIV-1_{RF} in vitro, with an EC₅₀ value of about 4 ngmL⁻¹. Similar biological activities were also observed for other cyclic depsipeptides isolated from different marine sponges, namely: callipeltin A, and mirabamides A–D. Given this background, it is not surprising that recent intensive efforts have been directed towards gaining synthetic access to these natural products. These efforts have led to the successful establishment of the stereochemistry of some sterogenic centers within this class of compounds. However, none of these molecules have yet been assembled. Herein, we report our synthetic strategy towards papuamide B.

Structurally, papuamide B comprises a 22-membered macrocycle, which is connected to a complex linear tetrapep-

[*] Dr. W. Xie, Dr. D. Ding, W. Zi, Dr. G. Li, Prof. Dr. D. Ma State Key Laboratory of Bioorganic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 354 Fenglin Lu, Shanghai 200032 (China) Fax: (+86) 21-6416-6128

E-mail: madw@mail.sioc.ac.cn

[**] The authors are grateful to the Chinese Academy of Sciences and the National Natural Science Foundation of China (grant numbers

tide through an amide bond. Several nonproteinogenic α -amino acid residues are present in the molecule, namely (2S,3S,4R)-3,4-dimethylglutamine, (2R,3R)-3-hydroxyleucine, (2S,3R)-2,3-diaminobutanoic acid, and β -methoxytyrosine. As the configuration of the β -methoxytyrosine unit was assigned as 2R,3R by synthetic preparation, [5a,b] the remaining stereochemical uncertainty of papuamides concerns the configuration of the three chiral centers in the 2,3-dihydroxy-2,6,8-trimethyldeca-(4Z,6E)-dienoic acid unit. As the ¹H NMR spectroscopic data of alcohol **2**, a degradation product of papuamide A, is known, [1] we planned to use this information to determine the stereochemistry of the papuamide side chain.

The required (2R,3R)-3-hydroxyleucine and (2R,3R)- β -methoxytyrosine units, **7** and **5**, respectively, were elaborated from the same L-serine derivative **3** (Scheme 2). [9] Alcohol **3**

Scheme 2. Reagents and conditions: a) Swern oxidation; b) RMgBr, THF; c) NaH, Mel, THF; d) Pd(OH)₂/C, (Boc)₂O, MeOH; e) Fmoc-(S)-pipecolic acid, TCBC, iPr $_2$ NEt, DMAP; f) I_2 , MeOH; g) Dess–Martin oxidation; h) NaClO $_2$, NaH $_2$ PO $_4$; i) allyl bromide, KHCO $_3$; j) Et $_2$ NH, MeCN. Bn = benzyl, Boc = tert-butyloxycarbonyl, DMAP = 4-dimethylaminopyridine, Fmoc = 9-fluorenylmethyloxycarbonyl, TBS = tert-butyldimethylsilyl, TCBC = trichlorobenzoyl chloride, THP = tetrahydropyran.

was oxidized to the aldehyde, and the desired *anti* amino alcohols **4** were prepared by a Grignard reaction. Alkylation of **4b** with iodomethane and NaH provided amino ether **5**. In a parallel procedure, esterification of Boc-protected **4a** with Fmoc-(*S*)-pipecolic acid in the presence of TCBC^[10] and DMAP furnished ester **6**, which was subsequently deprotected by using I₂/MeOH, oxidized stepwise to an acid, and converted into an allyl ester. Removal of the Fmoc protecting group afforded amino ester **7** in 68% overall yield.

Assembly of the macrocycle of papuamide B is outlined in Scheme 3. Treatment of 5 with TsOH/MeOH selectively removed the THP group, and subsequent hydrogenolysis over Pd/C in methanol produced the free amino alcohol, which was then coupled to dipeptide 8 to afford amide 9. Stepwise

Scheme 3. Reagents and conditions: a) TsOH, MeOH; b) Pd/C, H2; c) 8, EDC, HOAt, iPr2NEt; d) Dess-Martin oxidation; e) NaClO2, NaH₂PO₄; f) 7, DEPBT, iPr₂NEt; g) [Pd(PPh₃)₄], PhNHMe; h) 11, HATU, iPr_2NEt ; i) 1. [Pd(PPh₃)₄], PhNHMe; 2. Et_2NH ; j) HATU, iPr₂NEt, CH₂Cl₂, RT. EDC = 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, DEPBT = 3-(diethoxyphosphoryloxy)-1,2,3-benzotriazin-4(3H)-one, HATU = O-(7-azabenzotriazol-1-yl)-N,N,N',N'tetramethyluronium hexafluorophosphate, HOAt = 1-hydroxyazobenzotriazole, Ts = para-toluenesulfonyl.

oxidation of the primary hydroxy group in 9 provided an acid, which was then condensed with the amino ester 7 to yield ester 10. In this case, DEPBT^[11] was employed because other coupling reagents such as HATU and EDCI/HOAt failed to give satisfactory yields. After cleavage of the allyl ester in 10 with Pd⁰/N-methylaniline, [12] the free acid was coupled to dipeptide 11 to give linear peptide 12. Subsequent deprotection of 12 with [Pd(PPh₃)₄] and diethylamine provided a macrocyclization precursor, which was treated with HATU and DIPEA in dilute methylene chloride solution (0.002 M) to furnish lactam 13.

As (2S,3S,4R)-3,4-dimethylglutamine is a common fragment of papuamides A and B, callipeltin A, and neamphamide A,[1-3] considerable effort has been directed toward its synthesis.^[7] However, the reported synthetic routes suffer from laborious and inconvenient operations or poor diastereoselectivity. We assumed that the key problem with the current protocols is the difficulty of opening the pyrrolidinone rings with ammonia. We therefore envisaged using the more reactive δ -valerolactone 17 to build the required amide part of this glutamine fragment. The synthesis of 17 is illustrated in Scheme 4. By employing a known procedure, ketone 14 was prepared from D-serine in seven steps with an overall yield of 61 %.^[13] Condensation of **14** with the lithium enolate generated from ethyl propionate, followed by HCl-mediated

Scheme 4. Reagents and conditions: a) CH3CH2CO2Et, LDA, THF, -78°C; b) HCl, THF, H₂O; c) Ac₂O, Et₃N, DMAP, CH₂Cl₂, reflux; d) (Boc)₂O, DMAP; e) Pd(OH)₂/C, NaHCO₃, H₂O, tBuOH, H₂. LDA= lithium diisopropylamide.

cyclization and dehydration with Ac₂O/Et₃N/DMAP, afforded the unsaturated lactone 15 in 78% yield. Hydrogenation of 15 under various conditions resulted in an inseparable mixture of two diastereomers in an approximate ratio of 2:1. Fortunately, we found that when a second Boc protecting group was introduced, the resultant substrate 16 could be hydrogenated with Pd(OH)₂/C/H₂ in tBuOH to give the desired product 17 in 91% yield, together with its diastereomer 18 in 9% yield. The stereochemistry of 17 was confirmed by X-ray structural analysis (see the Supporting Information).

For the construction of the (2S,3R)-2,3-diaminobutanoic acid fragment (see 21), aziridine 19 was assembled based on the method of van der Donk (Scheme 5).[14] Switching the protecting groups in 19 provided aziridine 20, which was treated with trimethylsilyl azide in methanol to afford the required allyl ester 21.

$$\begin{array}{c}
\text{Tr} \\
\stackrel{N}{N} \\
\text{CO}_2\text{Me}
\end{array}$$

$$\begin{array}{c}
\text{A,b} \\
\text{N} \\
\text{N}
\end{array}$$

$$\begin{array}{c}
\text{No CO}_2\text{Allyl} \\
\text{CO}_2\text{Allyl}
\end{array}$$

$$\begin{array}{c}
\text{No CO}_2\text{Allyl}
\end{array}$$

$$\begin{array}{c}
\text{No CO}_2\text{Allyl}
\end{array}$$

$$\begin{array}{c}
\text{No CO}_2\text{Allyl}
\end{array}$$

Scheme 5. Reagents and conditions: a) LiOH, then allyl bromide, KHCO₃; b) CF₃CO₂H, then (Boc)₂O, Et₃N; c) TMSN₃, MeOH, 70°C. TMS = trimethylsilyl, Tr = trityl = triphenylmethyl.

The most complex fragment in the papuamide framework is the 2,3-dihydroxy-2,6,8-trimethyldeca-(4Z,6E)-dienoic acid moiety. Our efforts on its elaboration and the determination of the stereochemistry are summarized in Scheme 6. Sharpless asymmetric dihydroxylation of olefin 22 produced diol 23 in quantitative yield and 97% ee, as determined by chiral HPLC. Hydrogenolysis of 23 and subsequent Swern oxidation led to aldehyde 24, which was treated with the ylide generated from 25 to afford diene 26 in 82% yield and 20:1 Z/E selectivity. The reaction conditions for this step proved to be very critical, as low yields, poor Z/E selectivity, and racemization were encountered when other bases such as KOtBu, as well as other solvent systems such as THF or diethyl ether were used. Hydrolysis of 26 provided acid 27, which was condensed with amine 28, generated from L-threonine and glycine, to furnish (2S,3R,8S)-2, following removal of the acetonide unit with 60% HOAc. By adopting the same

2887

Zuschriften

Scheme 6. Reagents and conditions: a) AD-mix- α , H₂NSO₂Me, tBuOH, H₂O; b) TsOH, DMP, then Pd(OH)₂/C, H₂; c) Swern oxidation; d) **25**, NaHMDS, THF, HMPA, $-78\,^{\circ}$ C to RT; e) NaOH, MeOH, H₂O; f) **28**, HATU; g) 60% HOAc, 50 $^{\circ}$ C. HMDS = hexamethyldisilazane, HMPA = hexamethyl phosphoramide.

procedure, and employing AD-mix- α as well as the Z isomer of olefin **22**, we obtained three other isomers, namely: (2R,3S,8S)-**2**, (2S,3S,8S)-**2**, and (2R,3R,8S)-**2** (see the Supporting Information for structures). Additionally, use of the enantiomer of **28** as the coupling substrate afforded enantiomers of (2R,3S,8R)-**2**, (2S,3R,8R)-**2**, (2R,3R,8R)-**2**, and (2S,3S,8R)-**2**, respectively.

With this selection of stereoisomers at hand, we set out to establish the stereochemistry of the side chain in papuamides by comparison of the ^{1}H and ^{13}C NMR spectroscopic data with that reported for the degradation product **2**. Unfortunately, although (2S,3S,8S)-**2** and (2R,3R,8S)-**2**, which are the enantiomers of (2R,3R,8R)-**2** and (2S,3S,8R)-**2**, gave spectroscopic signals which are different to those of **2**, the chemical shift data of the other four isomers were indistinguishable from the literature data. Thus, we could only rule out the *anti* relationship of the 2,3-diol in the side chain.

With all the required fragments in hand, assembly of the target molecules became our next task. Treatment of lactone 17 with CF₃CO₂H afforded an amine, which was coupled to the acid released from allyl ester 21 to furnish amide 29 in 71 % yield (Scheme 7). As expected, ring opening of 29 with ammonia in methanol proceeded smoothly to provide amide 30 in 70 % yield. After oxidation of 30 with RuCl₃·H₂O/NaIO₄ to give the carboxylic acid, coupling with the deprotected amine of the macrocycle 13 was carried out, resulting in the key intermediate 31.

The final stages of the total synthesis of papuamide B and its isomers are depicted in Scheme 8. Removal of the acetonide moiety of diene **26** with (NH₄)₂Ce(NO₃)₆ (ceric ammonium nitrate, CAN) ^[15] provided the deprotected diol in satisfactory yield. Notably, alternative deprotection conditions such as TsOH/MeOH and 60% HOAc gave considerably lower yields owing to the poor stability of the resulting diol. After selective protection of the secondary alcohol with TBSCl and subsequent ester hydrolysis with aqueous NaOH

Scheme 7. Reagents and conditions: a) CF_3CO_2H , CH_2Cl_2 ; b) [Pd-(PPh₃)₄], PhNHMe; c) HATU, iPr₂NEt; d) NH₃, MeOH; e) 1. oxidation of **30**: **30**, RuCl₃·xH₂O, NaIO₄, MeCN, CCl₄, H₂O, 69%, 2. deprotection of **13**: **13**, CF_3CO_2H , CH_2Cl_2 , then 3. Coupling of intermediates from steps 1. and 2.: DEPBT, iPr₂NEt, 89%.

Scheme 8. Reagents and conditions: a) $(NH_4)_2Ce(NO_3)_6$, borate buffer, MeCN, THF, 60°C; b) TBSCl, imidazole, DMF; c) aq. NaOH, MeOH; d) H-Gly-L-Thr(TBS)-O-allyl, BOP, iPr_2NEt , MeCN; e) 1. Deprotection of **32**: $[Pd(PPh_3)_4]$, PhNHMe, 2. Deprotection of **31**: **31**, AlCl₃, CH₂Cl₂, then 3. Coupling of intermediates from steps 1. and 2.: DEPBT, iPr_2NEt ; f) TAS-F; g) Me₃P, H₂O, THF. BOP = benzotriazol-1-yloxytris-(dimethylamino) phosphonium, TAS-F = tris(dimethylamino) sulfur (trimethylsilyl) difluoride.

in methanol, coupling to H-Gly-L-Thr(TBS)-O-allyl then afforded ester 32. After cleavage of the allyl ester of 32 under palladium catalysis, the resulting acid was coupled to the amine liberated from 31 to furnish an amide, which was subjected to deprotection with TAS-F and reduction with trimethylphosphine/water to afford 33a in 22% overall yield. By using the same procedure described above, we elaborated three other isomers (33b-33d) from the corresponding stereoisomers of 26. Much to our surprise, none of these

isomers had ¹H NMR spectroscopic data identical to that previously reported for papuamide B. This finding indicated that a structural revision of this natural product was required.

As the ¹H NMR spectra of **33a** and **33c** are very similar to that of natural papuamide B (see Supporting Information), and major differences arose only from the signals of two protons adjacent to the two amino groups of the (2*S*,3*R*)-2,3-diaminobutanoic acid segment (assigned by TOCSY studies), we concluded that the stereochemistry of this part of the molecule might have been misassigned. Thus, we decided to elaborate the other three isomers of **33a** by varying the stereochemistry of the 2,3-diaminobutanoic acid part. The required building block **38** was prepared from the enantiomer of **19** by the procedure depicted in Scheme 5, while the two *anti* isomers **36** and **37** were obtained through a slightly different reaction sequence (Scheme 9), because direct hydrolysis of **34** led to decomposition.

Scheme 9. Reagents and conditions: a) CF_3CO_2H , then $(Boc)_2O$, Et_3N ; b) LiOH, MeOH, H_2O , then allyl alcohol, DCC, DMAP; c) TMSN₃, MeOH, $70\,^{\circ}C$. DCC=1,3-dicyclohexylcarbodiimide.

Starting from the azides 36–38, three isomers of 33 a were assembled following the same procedure reported for the transformation of azide 21 to 33 a (Scheme 10). Fortunately, by comparison, macrolactam 40 gave ¹H NMR spectroscopic data very similar to that of natural papuamide B, thus suggesting that the diaminobutanoic acid segment might indeed have a 2S,3S configuration. In order to unambiguously confirm the stereochemistry of this natural product, we next introduced different side chains to the revised core structure. Accordingly, when the same sequence was used as that for the elaboration of 26 to lactam 33, product 43 was obtained from 2S,3R,8R ester 42 in about 7% overall yield. Much to our delight, ¹H NMR spectra obtained for synthetic 43 were found to be identical to the literature data of papuamide B.[16] Although we found some difference in optical rotation $([\alpha]_D^{21} = +23.8 \ (c = 0.37, MeOH) \ (lit. \ [\alpha]_D^{21} = +12.9 \ (c = 0.13,$ MeOH)) and ¹³C NMR spectroscopic data, ^[16] we nevertheless propose that our synthetic material 43 is natural papuamide B and that this natural product has a side chain with 2S,3R,8R configuration; therefore the originally assigned 2S,3R stereochemistry in the 2,3-diaminobutanoic acid segment should be revised to 2S,3S. This conclusion is further supported by the fact that the 2R,3S,8S isomer of 43 generated from the 2R,3S,8S isomer of 42 gave ¹H NMR spectroscopic data remarkably different from to that of natural papuamide B.

In conclusion, a convergent route to natural papuamide B has been developed, which features stereoselective assembly

Scheme 10. Synthesis of papuamide B and its three isomers.

papuamide B (43)

of its dienoic acid fragment and an efficient elaboration of the (2S,3S,4R)-3,4-dimethylglutamine residue through a 3,4,5trisubstituted δ -valerolactone. The latter approach will be of great benefit for the total synthesis of other anti-HIV cyclic depsipeptides such as callipeltin A and neamphamide A. Accompanying the total synthesis, the configuration of three sterogenic centers of its 2,3-dihydroxy-2,6,8-trimethyldeca-(4Z,6E)-dienoic acid unit was established, and the stereochemistry of its 2,3-diaminobutanoic acid segment was revised. This information should be of benefit for fully establishing the structures of related cyclidepsipeptides like papuamide A^[1] and mirabamides A–D.^[4] This synthesis opens the door for elaboration of related natural products and their analogues, which would prompt the structure-activity relationship (SAR) studies of these potent anti-HIV agents. Further investigations in this area are being conducted within our research group and will be reported in due course.

Received: December 5, 2007 Published online: March 3, 2008

Keywords: anti-HIV activity · natural products · peptides · structure elucidation · total synthesis

P. W. Ford, K. R. Gustafson, T. C. McKee, N. Shigematsu, L. K. Maurizi, L. K. Pannell, D. E. Williams, E. D. Silva, P. Lassota,

Zuschriften

- T. M. Allen, R. V. Soest, R. J. Andersen, M. R. Boyd, *J. Am. Chem. Soc.* **1999**, *121*, 5899.
- [2] A. Zampella, M. V. D'Auria, L. G. Paloma, A. Casapullo, L. Minale, C. Debitus, Y. Henin, J. Am. Chem. Soc. 1996, 118, 6202.
- [3] N. Oku, K. R. Gustafson, L. K. Cartner, J. A. Wilson, N. Shigematsu, S. Hess, L. K. Pannell, M. R. Boyd, J. B. McMahon, J. Nat. Prod. 2004, 67, 1407.
- [4] A. Plaza, E. Gustchina, H. L. Baker, M. Kelly, C. A. Bewley, J. Nat. Prod. 2007, 70, 1753.
- [5] a) K. Makino, E. Nagata, Y. Hamada, Tetrahedron Lett. 2005, 46, 6827; b) N. Oku, R. Krishnamoorthy, A. G. Benson, R. L. Ferguson, M. A. Lipton, L. R. Phillips, K. R. Gustafson, J. B. McMahon, J. Org. Chem. 2005, 70, 6842; c) A. Zampella, R. D'Orsi, V. Sepe, A. Casapullo, M. C. Monti, M. V. D'Auria, Org. Lett. 2005, 7, 3585; d) Y. Hamada, T. Shioiri, Chem. Rev. 2005, 105, 4441; e) S. Calimsiz, Á. I. Morales Romos, M. A. Lipton, J. Org. Chem. 2006, 71, 6351; f) R. Krishnamoorthy, L. D. Vazquez-Serrano, J. A. Turk, J. A. Kowalski, A. G. Benson, N. T. Breaux, M. A. Lipton, J. Am. Chem. Soc. 2006, 128, 15392.
- [6] a) J. C. Thoen, Á. I. Morales Romos, M. A. Lipton, *Org. Lett.* 2002, 4, 4455; b) D. C. Cranfill, Á. I. Morales Romos, M. A. Lipton, *Org. Lett.* 2005, 7, 5881; c) J. Jeon, S.-K. Hong, J. S. Oh, Y. G. Kim, *J. Org. Chem.* 2006, 71, 3310; d) S. Chandrasekhar, M. S. Reddy, G. S. Kiranbabu, A. S. K. Murthy, *Tetrahedron Lett.* 2006, 47, 7307.
- [7] For other selected references, see: a) B. Liang, P. J. Carroll, M. M. Joullié, Org. Lett. 2000, 2, 4157; b) C. M. Acevedo, E. F. Kogut, M. A. Lipton, Tetrahedron 2001, 57, 6353; c) N. Okamotao, O, Hara, K. Makino, Y. Hamada, Tetrahedron: Asymmetry 2001, 12, 1353; d) S. Calimsiz, M. M. Lipton, J. Org. Chem. 2005, 70, 6218.

- [8] For other efforts on the total synthesis of marine cyclic peptides by our research group, see: a) J. Zhu, D. Ma, Angew. Chem. 2003, 115, 5506; Angew. Chem. Int. Ed. 2003, 42, 5348; b) B. Zou, J. Wei, G. Cai, D. Ma, Org. Lett. 2003, 5, 3503; c) S. Yu, X. Pan, X. Lin, D. Ma, Angew. Chem. 2005, 117, 137; Angew. Chem. Int. Ed. 2005, 44, 135; d) W. Xie, B. Zou, D. Pei, D. Ma, Org. Lett. 2005, 7, 2775; e) B. Zou, K. Long, D. Ma, Org. Lett. 2005, 7, 4237; f) S. Yu, X. Pan, D. Ma, Chem. Eur. J. 2006, 12, 6572; g) D. Ma, B. Zou, G. Cai, X. Hu, J. O. Liu, Chem. Eur. J. 2006, 12, 7615.
- [9] T. Laïb, J. Chastanet, J. Zhu, J. Org. Chem. 1998, 63, 1709.
- [10] J. Inanaga, K. Hirata, H. Saeki, T. Katsuki, M. Yamaguchi, *Bull. Chem. Soc. Jpn.* **1979**, 52, 1989.
- [11] H. Li, X. Jiang, Y. Ye, C. Fan, T. Romoff, M. Goodman, Org. Lett. 1999, 1, 91.
- [12] M. Ciommer, H. Kunz, Synlett 1991, 593.
- [13] X. E. Hu, N. K. Kim, B. Ledoussal, Org. Lett. 2002, 4, 4499.
- [14] H. Zhou, W. A. van der Donk, Org. Lett. 2002, 4, 1335.
- [15] W. R. Dichtel, S. Hecht, J. M. J. Fréchet, Org. Lett. 2005, 7, 4451.
- [16] See the Supporting Information for detailed analytical data. Notably, our 1H NMR spectroscopic data were all identical with those reported except for a less than $\delta = 0.03$ ppm difference at $\delta = 4.82$ and 0.59 ppm. However, for ^{13}C NMR spectroscopic data we found a $\delta = 1.36$ ppm difference for the signal at $\delta = 173.06$, while the other data are indistinguishable from those reported. Considering the appearance of many additional peaks in the original ^{13}C NMR spectra of natural papuamide B (see the Supporting Information), we reasoned that these differences might result from impurities in the original sample of natural product analyzed.